Современные биотехнологии в кормлении птицы

Йылдырым Е.А., кандидат биологических наук, биотехнолог молекулярно-генетической лаборатории
Бражник Е.А., контролер по качеству
Ильина Л.А., кандидат биологических наук, начальник молекулярно-генетической лаборатории
Дубровин А.В., биотехнолог молекулярно-генетической лаборатории
Филиппова В.А., биотехнолог молекулярно-генетической лаборатории
Новикова Н.И., кандидат биологических наук, заместитель директора
Лаптев Г.Ю., доктор биологических наук, директор
ООО «БИОТРОФ», Санкт-Петербург

Аннотация. Потребность в коррекции микробиома пищеварительной системы сельскохозяйственных животных и птицы решается с помощью кормовых добавок на основе штаммов пробиотических бактерий, повышающих эффективность усвоения корма и нормализующих состав микробиома. Однако разные штаммы микроорганизмов, даже родственных, имеют различные метаболические пути, свойства и механизмы действия. Как показали результаты молекулярно-биологических исследований, по своим характеристикам инновационный пробиотик Профорт на основе двух штаммов микроорганизмов Bacillus megaterium и Enterococcus faecium отвечает всем современным требованиям. В состав пробиотика входит два штамма микроорганизмов, которые обладают комплексом уникальных ферментов и метаболических путей. Они проявляют антагонистическую активность в отношении большинства представителей патогенной и гнилостной микрофлоры, поддерживая микробиологический баланс желудочно-кишечного тракта, что способствует улучшению переваривания корма и усвоемости питательных веществ. В результате полноценного секвестирования в лаборатории ООО «БИОТРОФ» у бактерий в составе пробиотика Профорт обнаружены гены ферментов, участвующих в биосинтезе важнейших соединений: аминокислот, витаминов, органических кислот, бактериоцинов. Возможность продукции штаммами бактерий в составе препарата органических кислот, прежде всего, масляной, способствует увеличению высоты борсники кишечника на 26,6%. Применение пробиотика Профорт способствует повышению напряженности иммунитета, улучшению состояния здоровья, повышению сохранности поголовья и увеличению продуктивности животных и птиц.

Ключевые слова: пробиотики, Профорт, Bacillus megaterium, Enterococcus faecium, бутират-синтезирующие бактерии, корма для птицы, высота кишечных борсикок.
Введение. Благодаря успехам в изучении микробиома животных и птиц доказано, что нормальная микрофлора кишечника можно рассматривать как дополнительный «орган», выполняющий ряд важнейших функций, таких как защита от патогенов, переваривание компонентов рациона, иммуномодулирующая активность, регенерация кишечного эпителия и др., что делает его основой здоровья организма. Работа этого «органа» может быть легко нарушена неблагоприятными внешними факторами: введением в рацион кормов низкого качества, загрязненных микотоксинами, частой сменой рационов, заболеваемостью, снижением иммунитета, нарушением условий содержания, стрессовыми факторами и др.

Данно доказано, что состав микробиома нуждается в корректировке при помощи введения в рацион штаммов полезных пробиотических бактерий.

В научно-производственной компании «БИОТРОФ» имеется уникальный центр молекулярно-генетических исследований, накопивший за годы работы фундаментальные и практические знания о микробиоме кишечника животных и птиц, а также опыт разработки и совершенствования пробиотических препаратов. Недавно, благодаря работе компании «БИОТРОФ» и ее центра, появилась новинка - мноожнокомпонентный пробиотик Профорт на основе двух штаммов микроорганизмов, Bacillus megaterium и Enterococcus faecium. Результаты многочисленных опытов, проведенных на птице, доказали безусловную эффективность применения этого биопрепарата: в результате его использования значительно повышалась сохранность поголовья, увеличивался среднесуточный прирост живой массы у бройлеров и яйценоскость - у яичной птицы.

Механизмы действия и метаболический потенциал штаммов бактерий в составе биопрепарата изучали с помощью такого современного метода, как полногеномное секвенирование с последующим функциональным анализом систем метаболизма. Целью нашей работы была расшифровка нуклеотидных последовательностей геномов бактерий B. megaterium и E. faecium в составе пробиотика Профорт и оценка влияния данного препарата на морфологию кишечного эпителия у кур.

Материал и методика исследований. Объектом полногеномного секвенирования служили бактерии B. megaterium и E. faecium в составе пробиотика Профорт (ООО «БИОТРОФ»). Выделение тотальной ДНК для проведение молекулярно-биологических анализов осуществляли с использованием набора «Genomic DNA Purification Kit» («Fermentas, Inc.», Литва), следуя рекомендациям производителя.

Секвенирование бактериальных геномов выполнено методом высокопроизводительного NGS-секвенирования на приборе MiSeq с применением набора реагентов MiSeq® ReagentKit v3 (600 циклов), а также наборов реагентов для приготовления библиотек Nextera DNA Flex Library Kit XT Index Kit (24 образца) и Nextera DNA CD Indexes (24 индекса, 24 образца). Биоинформационная обработка результатов ДНК-секвенирования включала контроль качества рядов с применением программы «Trimmomatic», удаление прочтений низкого качества и прочтений адаптерных последовательностей, сборку генома с применением программы «Spades», контроль качества сборки при помощи программы «Quast», анонсацию с использованием программы «Prokka», картирование полученных прочтений на референсный геном. Функциональная аннотация была проведена в базе данных «KEGG Automatic Annotation Server».

Исследование влияния Профорт на длину ворсинок кишечника проводили на бройлерах кросса «Кобб 500». На производствен-
ной площадке птицефабрики при равных условиях содержания были сформированы методом аналогоческого выбора группы цыплят (по 30 голов в каждой): контрольная, не получающая добавок, и опытная, получающая с кормом добавку Профорта. Продолжительность опыта составила 38 дней, начиная с первого суток выращивания.

Материалом исследования морфометрических показателей кишечника являлись ткани 12-перстной кишки птицы; исследование проведено в ФГБОУ ВО «Санкт-Петербургская академия ветеринарной медицины». Срезы толщиной 5-7 мкм окрашивали гематоксилин-эозином. Изображения и замеры делали в программе Mview. Подсчет клеток и измерения морфометрических параметров проводили в 5 полях зрения на 5 различных срезах для каждого образца, согласно методике [1].


Результаты исследований и их обсуждение. Важным этапом всестороннего анализа свойств микроорганизмов в составе пробиотических препаратов является реконструкция их метаболических путей с помощью расшифровки гена. Процесс создания таких метаболических карт может приводить к важным результатам уже на этапе разработки биопрепарата. Кроме того, исследователь может эффективно оценить весь спектр возможностей и конкурентоспособность пробиотических бактерий при попадании в кишечник хозяина.

Уникальный метаболизм. Проведенный филогенетический анализ штаммов B. megaterium и E. faecium в составе пробиотика Профорт выявил уникальность метаболических возможностей данных микроорганизмов по сравнению с аналогичными видами бактерий.

Так, на рис. 1 в качестве примера показана степень филогенетической близости штамма B. megaterium в составе Профорта к геномам родственных микроорганизмов. Видно, что между штаммом бактерии в составе биопрепарата и другими микроорганизмами того же вида были обнаружены значительные различия в составе геномов, а следовательно, и уникальность путей метаболизма. Такое геномное разнообразие у штаммов бактерий B. megarterium и E. faecium в составе пробиотика Профорт могло появиться в результате мутаций и горизонтального переноса генов между микроорганизмами.

В результате биоинформационной обработки с использованием базы данных «KEGG» выяснилось, что штаммы бактерий B. megaterium и E. faecium в составе пробиотика Профорт обладают рядом весьма полезных свойств, придающих им гораздо более высокую метаболическую активность по сравнению с аналогичными видами бактерий.

Как видно из рис. 2, в клетках B. megaterium и E. faecium в составе пробиотика Профорт имеется ряд ферментов, участвующих в биосинтезе важнейших соединений: аминокислот, в том числе незаменимых, витаминов, органических кислот, бактериоцинов и др.

Так, например, цистеин и метионин, синтезируемые E. faecium, являются лимитирующимися для птиц, поскольку в составе рацио-
нов наиболее часто наблюдается их дефицит. Преимуществом микробного синтеза аминокислот перед химическим является способность бактерий синтезировать эти вещества в биологически активной L-форме.

Особое значение имеет непротеиногенная γ-аминомасляная кислота, продуцируемая B. megaterium, которая принимает участие в нейромеридаторных и метаболических процессах. Она используется в промышленном птицеводстве в качестве адаптера, в том числе для профилактики канибализма, повышения резистентности организма, нормализации нейрогуморального статуса.

Одним из важнейших продуктов бактериального синтеза являются органические кислоты, значение которых для организма животных и птицы чрезвычайно важно. Штаммы бактерий B. megaterium и E. faecium в составе пробиотика Проферт позволяют вырабатывать достаточное количество указанных соединений, которые обладают противовоспалительным действием, защищают организм от патогенов и токсинов, поддерживают микробное равновесие и целостность слизистой кишечника.

Так, например, бутират, продуцируемый B. megaterium, стимулирует обновление клеток слизистой кишечника, рост и пролиферацию энтероцитов, крепт, влияет на кровоток в слизистой, является основным энергетическим субстратом для клеток кишечника, обеспечивая 70% их потребности в энергии, а также участвует в регуляции многих метаболических и сигнальных процессов в желудочно-кишечном тракте (ЖКТ).

Не менее ценным свойством бактерий в составе Проферт является способность образовывать витамины. Так, например, многие животные и птицы - ауксотрофы по биотину. Он играет важную роль во многих обменных процес сах в организме; при недостатке биотина у цыплят и индошат возникает депрессия роста, дерматиты на конечностях, в области головы, век и участков кловы, встречаются случаи перозиса.

Кроме того, в составе генома штамма B. megaterium обнаружено много генов, связанных с синтезом ансамблинковых бактериовитаминов, которые эффективны против многих Грам-положительных и Грам-отрицательных патогенов. Помимо этого, в составе его генома присутствуют гены синтеза глутамина, одного из важнейших компонентов системы антиоксидантной защиты у птиц, препятствующей повреждению биологических молекул и гибели клеток в результате действия свободных радикалов.

Оказалось, что изучаемый штамм бактерий E. faecium обладает крайне высоким потенциалом в биодеградации токсичных соединений, что объясняет его высокую активность против корковых миокотинокисных.

Интересно, что у штамма B. megaterium был выявлен целый набор специфических генов, благодаря которым он способен адаптироваться, вызывать и эффективно увеличивать численность в условиях кишечника птиц. Выяснилось, что выстилают и колонизируют поверхность слизистой кишечника штамму позволяет спо-
собность формировать биопленки, устойчивые к агрессивным факторам внешней среды. Эта способность определяется выраженными свойствами к адгезии благодаря наличию различных поверхностно- стных структур: жгутиков, пилей и белков наружной мембраны. После завершения адгезии бактерии начинают активно выделять экзополисахариды, заполняющие межклеточное пространство, что обеспечивает устойчивость к действию повреждающих физико-химических факторов.

Профорт стимулирует рост ворсинок. Внутренняя поверхность кишечника, его слизистая оболочка - не гладкая, это сложный рельеф из выростов (ворсинок) и углублений (крит). Активность всасывания питательных веществ в ЖКТ животных и птицы возрастает при увеличении размеров ворсинок кишечника.

При проведении опыта на бройлерах выявлена, что применение пробиотика Профорт стимулировало рост и регенерацию ворсинок кишечника в сравнении с контролем без добавок (рис. 3).

Средняя длина ворсинок 12-перстной кишки у бройлеров опытной группы в 15 сут. жизни была на 20% выше, чем в контрольной группе, а в 38 сут. - выше на 26,6% (рис. 4).

Подобный эффект был связан с продуцированием штаммами бактерий в составе Профорт органических кислот, прежде всего, масляной. Увеличение площади поверхности слизистой кишечника за счет увеличения высоты ворсинок в варианте с применением Профорт ведет к более интенсивному всасыванию питательных веществ.

Заключение. Потребность в коррекции микробиома пищеварительной системы сельскохозяйственных животных и птицы решается с помощью кормовых добавок на основе штаммов пробиотических бактерий, повышающих эффективность усвоения корма и нормализующих состав микрофлоры кишечника. Однако разные штаммы микроорганизмов, даже родственных, имеют различные метаболические пути, свойства и механизмы действия.

Огромный выбор кормовых добавок отечественного и зарубежного производства, влияющих на микрофлору кишечника птиц, ставит перед специалистами пицефабрик проблему рационального выбора наиболее эффективных кормовых добавок. Данную проблему можно решить только с помощью максимально точных и информативных молекулярно-биологических методов анализа.

Как показали результаты молекулярно-биологических исследований, по своим характеристикам инновационный пробиотик Профорт отвечает всем современным требованиям. В его состав входят два штамма микроорганизмов, которые обладают комплексом уникальных ферментов и метаболических путей. Они проявляют...
Modern Biotechnology in the Poultry Nutrition


BIOTROF, Ltd. (Saint-Petersburg)

Summary. The necessary corrections of the microbiome of the digestive system in animals and poultry can be achieved via feed additives based on the probiotic microbial strains improving the efficiency of digestion and promoting the proliferation of beneficial microbial species. However, even genetically related species can differ in their metabolic pathways, properties, and mechanisms of action. Molecular biological studies have evidenced that innovative probiotic Profort (BIOTROF, Ltd.) based on the two strains of Bacillus megaterium and Enterococcus faecium meets all modern requirements. These strains possess a complex of unique enzymes and metabolic pathways, render the antagonistic activity against pathogenic and putrefactive bacterial species, and maintain the beneficial microbial balance in the gastrointestinal tract contributing to the effectiveness of the digestion and nutrient absorption. The full-genome sequencing of these strains performed at the molecular genetic laboratory of BIOTROF, Ltd. revealed the presence of the genes of enzymes participating in the biosynthesis of metabolically important compounds (amino acids, vitamins, organic acids, and bacteriocins). The production of organic acids (primarily butyric) by these strains was found to promote the increase in the height of the duodenal villi by 26.6%. Supplementation of diets with probiotic Profort can enhance the immune function, improve health status, decrease mortality levels, and improve the productive performance in food animals and poultry.

Key words: probiotics, Profort, Bacillus megaterium, Enterococcus faecium, butyrate-synthesizing bacteria, poultry feeds, height of intestinal villi.